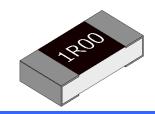


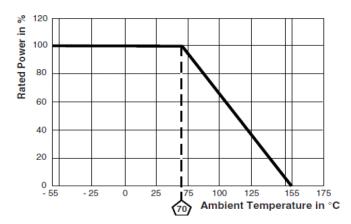
The history of revision change for the specification


Date	Revision	Changes
2022/03/23	A0	New approval
2022/08/05	A1	Update TCR specifications
2024/03/04	A2	Add" Max. Operating Voltage"

1W, 1206, Anti-Surge, High Power Chip Resistor

Features / Applications :

- Telecommunication Equipment, Digital Cameras
 Watches, Pocket Calculators, Computers, Instruments
- Excellent surge resistance characteristics
- Halogen Free Epoxy
- RoHS compliant, No RoHS exemption

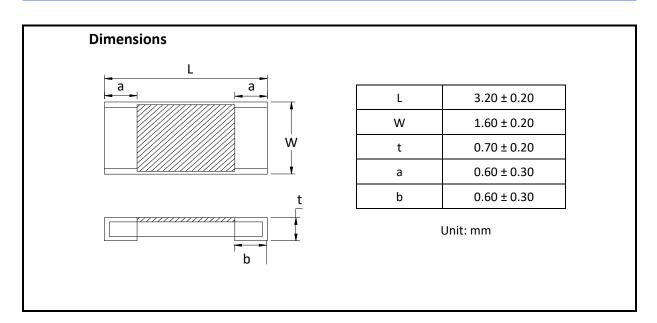


Electrical Specifications:

Characteristics	Feature			
Power Rating*		1 W		
Resistance Values	E-24 & E-96 series			
Resistance Range	1 Ω \sim <10 Ω	$10\Omega{\sim}100\Omega$	>100 $\Omega{\sim}$ 1K Ω	
Temperature Coefficient of Resistance(ppm/°C)	±150	±100	±150	
Resistance Tolerance	±0.5%(D), ±1%(F), ±2%(G), ±5%(J)			
Max. Operating Voltage**	200V			
Operation Temperature Range	-55°C ∼ +155°C			

*Note:

For sensor operated at ambient temperature in excess of 70°C, the maximum load shall be derated in accordance with the following curve.



**Note: Resistors shall have a rated DC or AC(rms.) continuous operating voltage corresponding to the power rating, as calculated from the following formula $V=\sqrt{P\times R}$. If the voltage obtained exceeds the maximum operating voltage, this maximum operating voltage shall be the rated voltage.

DOCUMENT: CYNP-223-011

Outline Drawing:

Type Designation:

HPFR16S -
$$\square$$
 \square \square \square - \square 6 TF

(1) (2) (3) (4) (5)

Note:

- (1) Series No.
- (2) Resistance value:

Three digits of number (E-24 Series)

 $100 = 10\Omega$

102 = 1K Ω

Four digits of number (E-96 Series)

 $11R3 = 11.3\Omega$

- (3) Tolerance (%): D=±0.5%, F=±1%, G=±2%, J=±5%
- (4) Power Rating: 6 = 1W
- (5) TF is total lead free (without RoHS exemption)

Characteristics:

Electrical

Item	Specification and Requirement	Test Method (JIS 5201)	
Temperature	As electrical specifications	Room temperature	
Coefficient of		Room temperature +100°C	
Resistance(ppm/°C)			
Short Time Overload	△R: ±(2%+ 0.0005Ω)	(1) Preconditioning	
	Without damage by flashover, spark,	(2) 2.5 * rated voltage for 5seconds	
	arcing, burning or breakdown		
Insulation Resistance	Over 100 M Ω on Overcoat layer face up	(3) Setup as figure 1	
	Over 1,000 M Ω on Substrate side face up	(4) Test voltage: 100VDC	
		(5) Test time: 60 + 10 / - 0 seconds	
Voltage Proof	△R: ± (0.5%+ 0.0005Ω)	(1) Setup as figure 1	
	Without damage by flashover, spark,	(2) Test voltage: 50VAC(rms.)	
	arcing, burning or breakdown	(3) Test time: 60 + 10 / - 0 seconds	

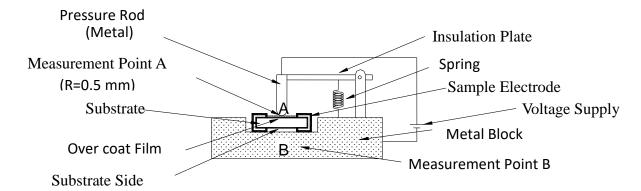


Figure 1 : Measurement Setup

DOCUMENT: CYNP-223-011

Mechanical

iviectianicai			
Item	Specification and Requirement		Test Method (JIS 5201)
Lead Solderability	△R: ±(0.5%+ 0.0005Ω)	(1)	Pretest Requirement: All
	The surface of terminal immersed shall be		samples shall be subjected to steam
	minimum of 95% covered with a new		aging for a period of 8 hours as a
	coating of solder		precondition to testing
		(2)	Lead Solderability 245 ± 5°C for
			5+0/ 0.5 seconds
Reflow Soldering	△R: ±(2.0%+ 0.0005Ω)	(1)	Reflow at 260°C for 10 seconds,
	Without distinct deformation in		3 cycles, and cool down in still
	appearance	(2)	Measuring resistance 1 hours
			after test
Solder Cycles	ΔR: ±(2.0%+ 0.0005Ω)	(1)	One Reflow cycle;
	Without distinct deformation in	(2)	Followed by cool down; then Hand
	appearance		Soldering:
		(3)	Immersion in molten solder 260°C
			for 10 seconds
Vibration Test	△R: ±(0.5%+ 0.0005Ω)	(1)	Preconditioning
	Without mechanical damage such as break	(2)	Parts are tested at10Hz to 2kHz at
			15g, 20min,12 times per 3 mutually
			perpendicular directions, total
			12hours
Mechanical Shock Test	△R: ±(0.5%+ 0.0005Ω)	(1)	Preconditioning
	Without mechanical damage such as break	(2)	Parts are tested at 50 ± 5G, 11ms,3
			shocks per 3 mutually perpendicular
			axes, total 18 shocks
Flexure Strength	ΔR: ±(0.5%+ 0.0005Ω)	(1)	Bending value: 2 mm for 60 ± 1
	Without mechanical damage such as break		seconds

DOCUMENT : CYNP-223-011

REVISION : A2

Endurance

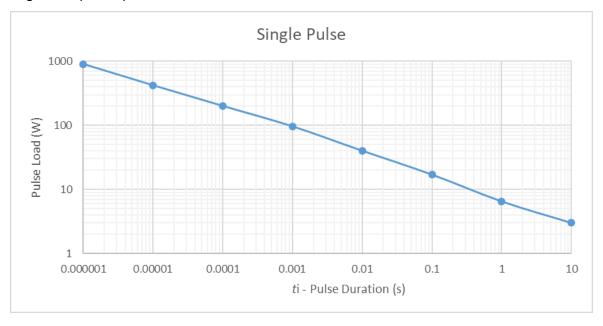
Endurance			
Item	Specification and Requirement		Test Method (JIS 5201)
Thermal cycling	ΔR: ±(2.0%+ 0.0005Ω)	(1)	Preconditioning
(Air to Air) Test	Without distinct damage in appearance	(2)	Parts are tested at-55 ± 3°C to 125 ±
			3°C with 30 min dwell time at each
			temperature, 1min max transition
			time, 1000 cycles.
		(3)	Measuring resistance 1 hour after
			test
Temperature Humidity	ΔR: ±(3.0%+ 0.0005Ω)	(1)	Preconditioning
Test	Without distinct damage in	(2)	Soldering heat
	appearance	(3)	Flexure strength
	Marking should be legible	(4)	Parts are tested at 1,000 hours at
			60°C ± 2°C, 90-95% RH
Load Life (Endurance)	ΔR: ±(2.0%+ 0.0005Ω)	(1)	Preconditioning
Test (Power Cycling)	Without distinct damage in	(2)	Parts must be cycled at 70°C at full
	appearance		rated power for 1.5hr power on
			and 0.5hr power off for 1000 hours
Load Life (Endurance)	△R: ±(2.0%+ 0.0005Ω)	(1)	Preconditioning
Test	Without distinct damage in		Parts are tested at a temperature of
	appearance		125 ± 2°C and rated power (or
			maximum rated temperature) for
			1,000 hours
HAST(Autoclave)	△R: ±(3.0%+ 0.0005Ω)	(1)	Preconditioning
(This test should be	Without distinct	(2)	Soldering heat
performed after	damage in appearance	(3)	Flexure strength
resistance to soldering			Part are tested for 48 hours, 121°C,
heat and flexure			100% R.H., 29.7 psia
strength tests)			
Terminal Strength	△R: ±(0.5%+ 0.0005Ω)	(1)	Thrust 17.7 N
	Without mechanical damage such as break	(2)	Times: 60 seconds

^{*}Preconditioning: 125*24H \cdot 85°C / 85%RH*168H \cdot 3 reflow cycles

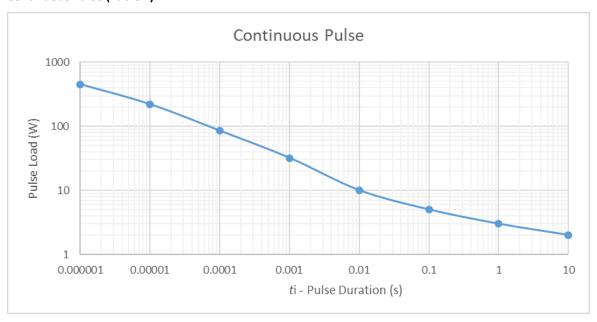
DOCUMENT : CYNP-223-011

REVISION : A2

Pulse test


Item	Specification and Requirement	Test Method (JIS 5201)	
Single pulsed	△R: ± 1.0%	(1)	Preconditioning
operational life	Without distinct damage in	(2)	Applied for the single pulse and its
	appearance		duration is 1us to 10s
		(3)	The maximum power load is shown
			in Table 1
Continuous pulsed	△R: ± 1.0%	(1)	Preconditioning
operational life	Without distinct damage in	(2)	Applied for the continuous pulse,
	appearance		its one cycle: ON time is 1us to 10s
			(ti), OFF time is 10*ti.
		(3)	Test cycles: 1000 cycles
		(4)	The maximum power load is shown
			in Table 2

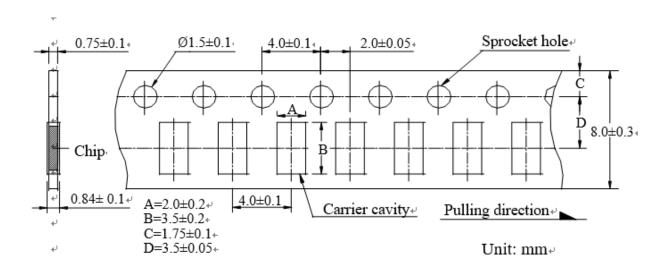
DOCUMENT: CYNP-223-011


REVISION : A2

Single Pulse (Table 1)

Continuous Pulse (Table 2)

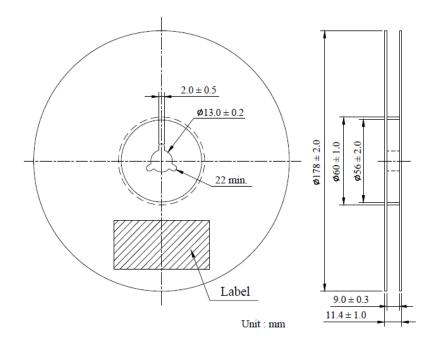
Recommend Land Pattern Dimensions:


Size	W	L	D	t
	(mm)	(mm)	(mm)	(um)
1632	1.78	4.14	1.37	105

Unit: mm

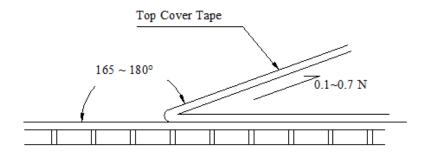
t: copper toil minimum thickness of PCB

Packaging:


Tape packaging dimensions

Remark: Leader tape length≥30 cm(150 Hollow carrier cavity)

Reel dimensions


Numbers of Taping: 5,000 pieces /reel

The following items shall be marked on the reel.

- (1) Type designation.
- (2) Quantity
- (3) Manufacturing date code
- (4) Manufacturer's name

Peel force of top cover tape

The peel speed shall be about 300 mm/min. The peel force of top cover tape shall be between 0.1 to 0.7 N.

DOCUMENT: CYNP-223-011

Chip Resistor

Care Note:

Care note for storage

- (1) Chip resistor shall be stored in a room where temperature and humidity must be controlled. (temperature 5 to 35°C, humidity 30 to 80% RH) However, a humidity keep it low, as it is possible.
- (2) Chip resistor shall be stored as direct sunshine doesn't hit on it.
- (3) Chip resistor shall be stored with no moisture, dust, a material that will make solderability inferior, and a harmful gas (Chloridation hydrogen, sulfurous acid gas, and sulfuration hydrogen).

Care note for operating and handling

- (1) It is necessary to protect the edge and protection coat of resistors from mechanical stress.
- (2) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
- (3) Resistors shall be used with in rated range shown in specification. Especially, if voltage more than specified value will be loaded to resistor, there is a case it will make damage for machine because of temperature rise depending on generating of heat, and increase resistance value or breaks.
- (4) In case that resistor is loaded a rated voltage, it is necessary to confirms temperature of a resistor and to reduce a load power according to load reduction curve, because a temperature rise of a resistor depends on influence of heat from mounting density and neighboring element.
- (5) Observe Limiting element voltage and maximum overload voltage specified in each specification
- (6) If there is possibility that a large voltage (pulse voltage, shock voltage) charge to resistor, it is necessary that operating condition shall be set up before use.

DOCUMENT : CYNP-223-011